在三角形ABC中,已知tanA-tanB/tanA+tanB=c-b/c.求角A。
LZ,∠A = 60度。
(tanA-tanB)/(tanA+tanB) = 1 - 2tanB/(tanA+tanB)
(c-b)/槐睁c = 1 - b/c
由已知可得,
2tanB/(tanA+tanB) = b/c = sinB/sinC (正弦定理)
又因为tanA + tanB = (sinAcosB + cosAsinB)/(cosAcosB)
= sin(A+B)/(cosAcosB)
= sinC/(cosAcosB)
由切化弦得,(2sinB/cosB)/(sinC/(cosAcosB)) = sinB/sinC
化简得到,cosA = 1/2
所以键明宴∠稿银A = 60度。 25378希望对你有帮助!