第6和第7题
a<n+1>=an+ln[1+(1/n)]=an+ln[(n+1)/n]=an+ln(n+1)-lnn
===> a<n+1>-ln(n+1)=an-lnn
令bn=an-lnn
则,b<n+1>=b<n>,且,b1=a1-ln1=a1=2
所以,数列bn是常数列2
则,bn=an-lnn=2
所以,an=2+lnn
—尘蔽—答案:A
已知是直薯兄银角三角数宴形,且a>b>c,则a为斜边
所以,a^2=b^2+c^2
已知b^2=ac
===> a^2-c^2=b^2
===> a^2-(b^2/a)^2=b^2
===> a^4-a^2b^2-b^4=0
===> (a^2/b^2)^2-(a^2/b^2)-1=0
===> a^2/b^2=(1±√5)/2
因为a/b>1
所以,a^2/b^2=(1+√5)/2
所以,a/b=√[(1+√5)/2]