在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,求证:DE=AD-BE


证明△ACD与△CBE全等盯袜败

证明:∵BE⊥CE,AD⊥CE
∴∠CEB=90°,∠ADC=90°
∵∠ACD+∠BCE=90°,∠ACD+∠DCA=90°
∴∠BCE=∠DCA
在△ACD与△CBE中凯颤
∠CEB=∠ADC=90°
∠BCE=∠DCA
AC=BC
∴△ACD≌△CBE(AAS)好敬
∴AD=CE,CD=BE
又∵DE=CE-CD
∴DE=AD-BE
你好

证明:
∵∠ACB=90°
∴∠BCE+∠祥轮扰ECA=90°
又∵∠ADC=90°
∴∠CAD+∠ACD=90°
∴∠BCE=∠CAD
在△BED与△CDA中桐袭
∠ADC=∠CEB=90°
∠BCE=∠CDA
BC=CA
∴△谨旦BEC≌△CDA
∴AD=EC
CD=BE
∴DE=EC-CD=AD-BE
证悔卖旁明:
∵BE⊥CE,AD⊥CE
∴∠BEC=∠ADC=90
∴∠BCE+∠CBE=90
∵∠ACB=90
∴∠BCE+∠ACD=90
∴∠CBE=∠ACD
∵AC=BC
∴△ACD≌△CBE (AAS)
∴BE=CD,AD=CE
∵DE=CE-CD
∴DE=AD-BE

数学辅导团解答了你的配郑提问,理解请及时采纳为碧橡最佳答案。
∵猜和BE⊥CE,AD⊥CE,∴磨兆衫瞎腔∠E=∠CDA①
又∵∠ACB=90°,∴∠ACD=CBE②(同角的余角相等)
又AC=BC③
∴由①②③的△ACD≌⊿CBE
∴BE=CD,AD=CE
∴DE=CE-CD=AD-BE
证明:
在△仿行ACD和△CBE中,
∵罩手∠ADC = 90°= ∠备闷哗CEB ,∠CAD = 90°-∠ACD = ∠BCE ,AC = CB
∴△ACD ≌ △CBE (AAS)
∴CD = BE AD=CE
∵DE = CE-CD
∴DE =AD-BE