小学工程问题的分类和解答

小学6年级升学考试里可能出现的工程问题和分类以及解答方法!200分跪求!有好的可以追加100分!
在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是
工作量=工作效率×时间.
在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.
举一个简单例子.
一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?
一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工高迟作量,我们用的时间单位是“天”,1天就是一个单位,

再根据基本数量关系式,得到
所需时间=工作量÷工作效率

=6(天)•
两人合作需要6天.
这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.
为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是
30÷(3+ 2)= 6(天)

数计算,就方便些.

∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也

需时间是

因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.
一、两个人的问题
标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.
例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?

答:乙需要做4天可完成全部工作.
解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是
(18- 2 × 3)÷ 3= 4(天).
解三:甲与乙的工作效率之比是
6∶ 9= 2∶ 3.
甲做了3天,相当于乙戚颤李做了2天.乙完成余下工作所需时间是6-2=4(天).
例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?
解:共做了6天后,
原来,甲做 24天,乙做 24天,
现在,甲做0天,乙做40=(24+16)天.
这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率
如果乙独做,所需时间是

如果甲独做,所需时间是

答:甲或乙独做所需时间分别是75天和50天.
例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?
解:先对比如下:
甲做63天,乙做28天;
甲做48天,乙做48天.
就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的

甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做

因此,乙还要做
28+28= 56 (天).
答:乙还需要做 56天.
例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天洞芹(不存在两队同一天休息).问开始到完工共用了多少天时间?
解一:甲队单独做8天,乙队单独做2天,共完成工作量

余下的工作量是两队共同合作的,需要的天数是

2+8+ 1= 11(天).
答:从开始到完工共用了11天.
解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作
(30- 3 × 8- 1× 2)÷(3+1)= 1(天).
解三:甲队做1天相当于乙队做3天.
在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.
4=3+1,
其中3天可由甲队1天完成,因此两队只需再合作1天.
例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?
解一:如果16天两队都不休息,可以完成的工作量是

由于两队休息期间未做的工作量是

乙队休息期间未做的工作量是

乙队休息的天数是

答:乙队休息了5天半.
解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.
两队休息期间未做的工作量是
(3+2)×16- 60= 20(份).
因此乙休息天数是
(20- 3 × 3)÷ 2= 5.5(天).
解三:甲队做2天,相当于乙队做3天.
甲队休息3天,相当于乙队休息4.5天.
如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是
16-6-4.5=5.5(天).
例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?
解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.
设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.
8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要
(60-4×8)÷(4+3)=4(天).
8+4=12(天).
答:这两项工作都完成最少需要12天.
例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他

要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?
解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.
两人合作,共完成
3× 0.8 + 2 × 0.9= 4.2(份).
因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是
(30-3×8)÷(4.2-3)=5(天).
很明显,最后转化成“鸡兔同笼”型问题.
例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时

如果这件工作始终由甲一人单独来做,需要多少小时?
解:乙6小时单独工作完成的工作量是

乙每小时完成的工作量是

两人合作6小时,甲完成的工作量是

甲单独做时每小时完成的工作量

甲单独做这件工作需要的时间是

答:甲单独完成这件工作需要33小时.
这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每

有一点方便,但好处不大.不必多此一举.
二、多人的工程问题
我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.
例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?
解:设这件工作的工作量是1.

甲、乙、丙三人合作每天完成

减去乙、丙两人每天完成的工作量,甲每天完成

答:甲一人独做需要90天完成.
例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?
例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?
解:甲做1天,乙就做3天,丙就做3×2=6(天).

说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了
2+6+12=20(天).
答:完成这项工作用了20天.
本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了

例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?
解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.

他们共同做13天的工作量,由甲单独完成,甲需要

答:甲独做需要26天.
事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.
例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?
解一:设这项工作的工作量是1.
甲组每人每天能完成

乙组每人每天能完成

甲组2人和乙组7人每天能完成

答:合作3天能完成这项工作.
解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.
现在已不需顾及人数,问题转化为:
甲组独做12天,乙组独做4天,问合作几天完成?

小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.
例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?
解一:仍设总工作量为1.

甲每天比乙多完成

因此这批零件的总数是

丙车间制作的零件数目是

答:丙车间制作了4200个零件.
解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.
乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知
乙、丙工作效率之比是16∶14=8∶7.
已知
甲、乙工作效率之比是 3∶2= 12∶8.
综合一起,甲、乙、丙三人工作效率之比是
12∶8∶7.
当三个车间一起做时,丙制作的零件个数是
2400÷(12- 8) × 7= 4200(个).
例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是

答:丙帮助甲搬运3小时,帮助乙搬运5小时.
解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4.
三人共同搬完,需要
60 × 2÷ (6+ 5+ 4)= 8(小时).
甲需丙帮助搬运
(60- 6× 8)÷ 4= 3(小时).
乙需丙帮助搬运
(60- 5× 8)÷4= 5(小时).
三、水管问题
从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.
例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?

甲每分钟注入水量是

乙每分钟注入水量是

因此水池容积是

答:水池容积是27立方米.
例16 有一些水管,它们每分钟注水量都相等.现在
按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?

答:开始时打开6根水管.
例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要

、乙、……的顺序轮流打开1小时,问多少时间后水开始溢出水池?

,否则开甲管的过程中水池里的水就会溢出.

以后(20小时),池中的水已有

此题与广为流传的“青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?
看起来它每小时只往上爬3- 2= 1(尺),但爬了27小时后,它再爬1小时,往上爬了3尺已到达井口.
因此,答案是28小时,而不是30小时.
例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
解:先计算1个水龙头每分钟放出水量.
2小时半比1小时半多60分钟,多流入水
4 × 60= 240(立方米).
时间都用分钟作单位,1个水龙头每分钟放水量是
240 ÷ ( 5× 150- 8 × 90)= 8(立方米),
8个水龙头1个半小时放出的水量是
8 × 8 × 90,
其中 90分钟内流入水量是 4 × 90,因此原来水池中存有水 8 × 8 × 90-4 × 90= 5400(立方米).
打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要
5400 ÷(8 × 13- 4)=54(分钟).
答:打开13个龙头,放空水池要54分钟.
水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.
例19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?
解:设满水池的水量为1.
A管每小时排出

A管4小时排出

因此,B,C两管齐开,每小时排水量是

B,C两管齐开,排光满水池的水,所需时间是

答: B, C两管齐开要 4 小时 48分才将满池水排完.
本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数 24.
17世纪英国伟大的科学家牛顿写过一本《普遍算术》一书,书中提出了一个“牛吃草”问题,这是一道饶有趣味的算术题.从本质上讲,与例18和例19是类同的.题目涉及三种数量:原有草、新长出的草、牛吃掉的草.这与原有水量、渗入水量、水管排出的水量,是完全类同的.
例20 有三片牧场,场上草长得一样密,而且长得一

草;21头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草?
解:吃草总量=一头牛每星期吃草量×牛头数×星期数.根据这一计算公式,可以设定“一头牛每星期吃草量”作为草的计量单位.

原有草+4星期新长的草=12×4.
原有草+9星期新长的草=7×9.
由此可得出,每星期新长的草是
(7×9-12×4)÷(9-4)=3.
那么原有草是
7×9-3×9=36(或者12×4-3×4).
对第三片牧场来说,原有草和18星期新长出草的总量是

这些草能让
90×7.2÷18=36(头)
牛吃18个星期.
答:36头牛18个星期能吃完第三片牧场的草.
例20与例19的解法稍有一点不一样.例20把“新长的”具体地求出来,把“原有的”与“新长的”两种量统一起来计算.事实上,如果例19再有一个条件,例如:“打开B管,10小时可以将满池水排空.”也就可以求出“新长的”与“原有的”之间数量关系.但仅仅是例19所求,是不需要加这一条件.好好想一想,你能明白其中的道理吗?
“牛吃草”这一类型问题可以以各种各样的面目出现.限于篇幅,我们只再举一个例子.
例21 画展9点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队.问第一个观众到达时间是8点几分?
解:设一个入场口每分钟能进入的观众为1个计算单位.
从9点至9点9分进入观众是3×9,
从9点至9点5分进入观众是5×5.
因为观众多来了9-5=4(分钟),所以每分钟来的观众是
(3×9-5×5)÷(9-5)=0.5.
9点前来的观众是
5×5-0.5×5=22.5.
这些观众来到需要
22.5÷0.5=45(分钟).
答:第一个观众到达时间是8点15分.
教学目标

1.认识工程问题的特点,理解工作总量可以用单位“1”来表示。工作效率可以用单位时间内完成工作量的几分之一来表示。

2.理解掌握工程问题的数量关系和解答方法。

3.培养学生利用已有的知识分析解答新问题的能力。

教学重辩汪点和难点

学会怎样用单位“1”表示工作总量,以及用单位时间内完成工作总量的几分之一表示工作效率。掌握工程问题的解答方法。

教学过程

(一)复习准备

1.以前我们学过做工问题,谁还记得做工问题涉及到哪三种量?(工作总量、工作时间、工作效率)

它们之间有什么关系呢?

生口述,教师出示投影:

工作总量=工作效率×工作时间

工作效率=工作总量÷工作时间

工作时间=工作总量÷工作效率

2.一条水渠长120米,5天修完,平均每天修多少米?

依据三量关系,这道题已知什么?求什么?怎样列式?(120÷5=24(米))

24表示什么?(工作效率)

之几。它们都是用工作量÷工作时间得到的。)

工作效率既可以是具体数量,也可以用单位时间内完成的占全部工作量的几分之一来表示。

(二)学习携基仔新课

1.出示例10。

例10 一段公路和长30千米。甲队单独修10天完成,乙队单独修15天完成,两队合修几天完成?

2.分析解答。

(1)读题,思考,列式,解答,做在练习本上。

(2)说说你是怎样列式的?

30÷(30÷10+30÷15)

根据什么列式?(工作总量÷工作效率和=工作时间)

30÷10求的是什么? 30÷15求的是什么?

这两个商加起来,得到的是什么?(甲队和乙队的工效和。)

再用30除以它们的和得到的是什么?(合修所用的工作时间。)

(3)板书解答过程:

30÷(30÷10+30÷15)

=30÷(3+2)

=30÷5

=6(天)

答:两队合修6天可以完成。

3.变换题中的条件再分析解答。

(1)把30千米改为40千米、45千米、500千米、10千米、2千米。请你们以小组为单位,每一组选择一个数据解答出来。

(2)谁能说说你们组选择的工作量是多少米?解答的结果是多少?

每一组推选一名同学回答,结果都是6天。

(3)既然工作总量发生变化而结果不变,那么我们去掉题中工作总量的具体数量,这道题还能不能解答?

4.改造例10:去掉具体的工作总量。

一段公路,甲队单独修10天完成,乙队单独修15天完成。两队合修几天可以完成?

(1)以讨论题为线索,讨论这道题可以怎样解答。

出示讨论题:

①这道题求哪个量?应已知哪些条件?

②工作总量没有给出具体数量怎么办?(用“1”表示。)

③甲队的工作效率和乙队的工作效率怎样表示?甲队、乙队的工效

(2)汇报讨论结果。(先说讨论题再说解答方法。)

1表示什么?(工作总量)

工作总量不是具体数量,我们把它看作单位“1”。

作效率。)

工作总量用单位“1”表示,那么工作效率就要用每天完成单位“1”的几分之一来表示。

间)

(3)板书解答过程:

答:两队合修6天可以完成。

5.工作总量发生了变化,为什么工作时间不变呢?请你们每一组用刚才选择的数据,计算出甲队工作效率是工作总量的几分之几,乙队工作效率是工作总量的几分之几?甲乙两队的工效和是工作总量的几分之几?

汇报计算结果:

6.这两种解法有什么相同点和不同点?

(都利用三量关系来解答是它们的相同点。不同点在于,前者的工作总量给出锋念了具体数量,因此工效也是具体数量;后者把工作总量看作单位“1”,工效用单位“1”的几分之一来表示。)

后者就是我们今天学习的工程问题。工程问题有什么特点?

(工作总量、工作效率都是用“率”来表示的。)

(三)巩固反馈

1.出示“做一做”。

一项工程,甲队单独做要用20天,乙队单独做要用30天。如果两队合做,每天完成这项工程的几分之几?几天可以做完?

(1)在练习本上独立完成。

(2)提问反馈:第一问求什么?(工效和)

怎么求甲乙两队的工效和?(甲工效+乙工效)甲乙的工效各是多

第二问求什么?应根据什么列式?

2.只列式不计算。(小组讨论完成,每组再选一名同学分析。)

一项工程,甲队单独做需6天完成,乙队单独做需12天完成,丙队单独做需18天完成。

①乙丙两队1天完成几分之几?5天完成几分之几?

②若甲乙两队合做2天,还剩几分之几?

③甲、乙、丙队合作几天能完成全部工程?

3.选择正确的列式。

甲乙两地相距500千米,快车5小时走完,慢车10小时走完。两车同时相对开出几小时相遇?

[ ]

A.500÷(500÷5+500÷10)

(四)布置作业

课本第99页第1~4题。

课堂教学设计说明

本节教案的设计重在让学生在把握工程问题与做工问题内在联系的基础上,利用工作量、工作效率、工作时间这三量之间的关系解答工程问题,并进一步掌握工程问题的特点和解题思路。

通过对准备题的分析解答,首先让学生认识到工作效率既可以是具体数量,也可以用单位时间完成工作量的几分之一来表示,为例10的解答作好了铺垫。在例10的教学过程中采用了以旧知识为起点变换数据导入新知,在一系列的解答过程中使学生理解新旧知识的联系,并归纳出工程问题的特点。这样符合学生的认知规律,便于学生掌握。
加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、 乙两人合做5天后,剩下的由丙1人做,还要几天完成?
〔思路说明〕 题目要求剩下的工作量由丙1人做,还要几裂早明天完成,必须知道剩下的工作量和丙的工作效 率。
加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一 天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。甲、乙合做一天,完成这批 零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲 、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量 由丙1人做还要几天完成。
综合算式:
〔1-(1/10+1/15)×5〕÷1/12
=〔1-1/6×5〕÷1/12
=1/6÷1/12=2(天)

一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少 天?
〔思路说明肆告〕 ①把这项工程的工作总量看作“1”。甲队修建需要12天,修建1天完成这项工程的1 /12;乙队修建需要20天,修建1天完成这项工程的1/20。甲、乙两队共同修建1天,完成这项工程 的1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工 程所需要的天数。
1÷(1/12+1/20)=1÷2/15=15/2(天)
②设这项工程的全部工作量为睁凯60(12和20的最小公倍数),甲队一天的工作量为60÷12=5, 乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。用工作总量除以两队合建 一天的工作量,就是两队合建的天数。
60÷(60÷12+60÷20)=60÷(5+3)
=60÷8=15/2(天)
一项工程,甲乙合作8天可完成,甲独做4天,乙又独做2天,还有全工程的三分之二没有完成。每队单独做各需多少天可完工?

甲独做4天,乙又独做2天,可以看成是甲乙合作锋扰2天,甲再独做2天
甲乙合作2天完成工程的
8分之1×2=4分之1
甲2天完成工程的
1-3分之2-4分之1=12分之1
甲每天完成工程的
12分之1÷2=24分之1
乙每天完成工程的
8分之1-24分之1=12分之1
甲独做完成需要
1÷24分之1=24天
乙独做完成需要
1÷12分之1=12天

修筑一条公路,甲工程队独修要10天完成,乙工程队要15天完成,现在有两个工程队和修这段公路,中途甲停工了2天,完成这段公路共用多少天

甲工程队一天完成该工程的1/10,乙工程队一天完成该工程的1/15.中途甲停工了2天,这两天乙单独修,完成了该工程的2/15,则余下的13/15是由甲乙共银灶旦同修的,甲乙一天修工程的1/10 +1/15=1/6,(13/15)÷(1/6)=5.2天,加上乙单独修的2天,共7.2天

我要的是这种问题:做一批零件,甲单独做要10小时。乙在相辩段同的时间里只能做六分之五。现在甲乙合做3小时后,剩下的要甲来做。还要做几小时

1、一条路,甲队独修20天完成,乙队独修30天完成,两队合修5天后,由甲队单独修,还要几天修完?
2、工程队修一条路,第一天修了全长的3分之1,第二天修了全长的4分之1,前两天共修5分之3千米。这条路全长多少千米?
3、一本故事书,小明第一天读了全书的10分之1,第二天读了12页,还剩全书的5分之4,全书有多少页?
4、 三个学校参加植树活动,甲校植树占总数的4分之1,乙校与丙校植树棵数的比是4: 5,甲校比丙校少植树64棵,甲、乙、丙三个学校各植树多少棵?
5、加工一批零件,原计划按5:3分配给甲、乙两人加工,甲实际加工960个,超过原分配任务的20%,乙因外出学习只完成原分配任务的3分之2,乙实际加工多少个零件
。。。。。。。。。。。。。。。

还有许多,你去百度
生产一批零件,甲每小时可做18个,乙单独做要12小时完成。现在由甲乙二人合做,完成任务时,甲乙生产零件世睁的数量之比是3:5,甲一共生产零件多少个?
18÷3×5=30(乙1小时生产的)
30:18=1/12:X
30X=1.5
X=1.5÷30
X=1/20(甲单知返虚独做要20小时)
1÷(1/12+1/20)=1÷8/60=7.5(小时)(2人搭燃合做要7.5小时)
18×7.5=135
答:甲生产135个.