√(1-cosx)=√(1-(1-2sin^(x/2)))= √2|sin(x/2)|
sinx/√(1-cosx)=2sin(x/2)cos(x/2)/√2|sin(x/2)|
sin(x/2)>0时, 上式橘散=√2cos(x/2)
sin(x/2)<0时, 上式=-√2cos(x/2)
原式在x->0+时右极限为√谈伍历2,含搜原式在x->0-时即左极限为-√2
故所求极限不存在
lim(x->0) sinx/指宽宏√(1-cosx)巧启
=lim(x->0) sinx/ sin(x/2) (0/0)
=lim(x->唯册0) cosx/[ (1/2)cos(x/2)]
=2