课外数学趣味知识 有趣的数学科普小知识有哪些

课外数学趣味小知识相信很多的网友都不是很明白,包括有趣的数学科普小知识有哪些也是一样,不过没有关系,接下来就来为大家分享关于课外数学趣味小知识和有趣的数学科普小知识有哪些的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!

有趣的数学科普小知识都有哪些

有趣的数学科普小知识如下:

一、阿拉伯数字

阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

二、九九歌

九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。

大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。

三、莫比乌斯环

莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。

莫比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断开,这也是莫比乌斯环的神奇之处。

四、克莱因瓶

在1882年,著名数学家菲利克斯·克莱因发现了后来以他的名字命名的著名“瓶子”:克莱因瓶。克莱因瓶就像是一个瓶子,但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。

五、黄金分割

黄金分割提出者是毕达哥拉斯。

有一次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。为了揭开这些声音的秘密,他测量了铁锤和铁砧的尺寸,发现它们存在着十分和谐的比例关系。回家后,他取出一根线,分为两段,反复比较,最后认定1:0.618的比例最为优美。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。

5个趣味数学小知识50字(数学趣味小知识简短的20到50字左右)

1.数学趣味小知识简短的 20到50字左右

趣味数学小知识

数论部分:

1、没有最大的质数。欧几里得给出了优美而简单的证明。

2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。

3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家安德鲁*怀尔斯证明。

拓扑学部分:

1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。

3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,

摘自:/bbs2/ThreadDetailx?id=31900

2.数学趣味小知识简短的 20到50字左右

趣味数学小知识数论部分:1、没有最大的质数。

欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。

陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。

欧拉证明了3和4,1995年被英国数学家安德鲁*怀尔斯证明。拓扑学部分:1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,摘自:/bbs2/ThreadDetailx?id=31900。

3.趣味数学的小故事 50字左右的

大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。

而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。

但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

小朋友你们可知道数学天才高斯小时候的故事呢?

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

1+2+3+。..+97+98+99+100=?

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把 1加至 100与 100加至 1排成两排相加,也就是说:

1+2+3+4+。..+96+97+98+99+100

100+99+98+97+96+。..+4+3+2+1

=101+101+101+。..+101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100除以 2便得到答案等于

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱……

下面就是一个小故事,是一个数字之间的故事。

有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。

0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”

0的兄弟姐妹们一口齐声的说:“好啊。”

8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”

老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”

于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”

在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?

唐僧师徒摘桃子

一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?

八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?

唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?

4.趣味数学故事50字

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。

组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。

更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。

奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

5.趣味数学故事50字

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。

组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。

更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。

奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

6.趣味数学小故事50字(自编的)

国际象棋小故事

弃后

从前,有两个棋手下通讯赛。执白棋的一方住在南极,执黑棋的一方住在北极。由于路途遥远,邮政效率又比较低。两人每年才能走一步棋。15年后该白棋走,住在南极的人走了一步大胆的弃后,使局面异常复杂。一年后,在终于等到送信的邮递员后,他激动地想:“黑棋会不会吃我的皇后呢?我的弃后肯定非常漂亮。”

然而,当他打开信后,信上写着:“皇后走错格了。”

聪明的狗

一个人在海边散步,看到另一个人在与他的狗下棋。他感到非常惊讶,走上去对那个人说:“我简直不能相信自己的眼睛,这是我看到的最聪明的狗!”,下棋的人头也不抬地说:“它笨得要命,我赢了它3局,它才赢了我1局。”

安静

前世界冠军美国棋手菲舍尔下棋时要求赛场内绝对安静,有一点动静都不能有。在1972年冰岛首都雷克雅未克举行的菲舍尔与斯帕斯基的世界冠军对抗赛上,菲舍尔突然从棋盘上抬起头,很不满地冲观看棋赛的观众喊道:

--第12排的那个姑娘,别再吃糖了!

--我只吃了三块。

--不是三块,是七块。你以为我没有给你数着!

国王的重赏

传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔。这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。

国王应给象棋发明人多少粒麦子?(1+2+4+8+……+2的63次方=2的64次方-1=18446744073709551615(粒))

有趣的数学科普小知识有哪些

有趣的数学科普小知识如下:

一、阿拉伯数字

阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

二、九九歌

九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。

大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。

三、莫比乌斯环

莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。

莫比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断开,这也是莫比乌斯环的神奇之处。

四、克莱因瓶

在1882年,著名数学家菲利克斯·克莱因发现了后来以他的名字命名的著名“瓶子”:克莱因瓶。克莱因瓶就像是一个瓶子,但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。

五、黄金分割

黄金分割提出者是毕达哥拉斯。

有一次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。为了揭开这些声音的秘密,他测量了铁锤和铁砧的尺寸,发现它们存在着十分和谐的比例关系。回家后,他取出一根线,分为两段,反复比较,最后认定1:0.618的比例最为优美。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。

END,本文到此结束,如果可以帮助到大家,还望关注本站哦!