数字知识 关于数字的一些小知识

很多朋友对于数字小知识和关于数字的一些小知识不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!

数学小知识简短有哪些

数学小知识简短:

1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就是司南。

2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。

4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。

5、传说早在四千五百年前,我们的祖先就用刻漏来计时。

6、中国是最早使用四舍五入法进行计算的国家。

7、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。

8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。

9、荷兰数学家卢道夫把圆周率推算到了第35位。

10、有“力学之父”美称的阿基米德流传于世的数学著作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

11、零。在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。

12、数字系统。数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。

关于数字的一些小知识

数字的由来

数字可谓是数学大厦的基石,也是人们最早研究的数学对象。

在几百万年前。我们的祖先还只知道“有”、“无”、“多”、

“少”的概念,而不知道数为何物。随着文明的进步,这些模糊不清

的概念无法满足生产、生活的需要。例如我国古书《周易》上就有“

上古结绳而治”的载。即当发生一次重要事件时,就在绳子上打一

个结作为标记。

这种方法虽然简单,但至少表明人们已经有了数的概念。

文字出现以后,人们试图数学以符号的形式记录下来。于是就出现

了各种种样的记录方法。古埃及人用“|”表示一,用“‖”表示二;

古罗马人用“Ⅰ”表示一,用“Ⅱ”表示二。这种方法虽然有效,但

是当数字很大时记录起来十分不便。例如我们要表示一百时,难道要写

一百个“|”吗?当然,古罗马人也看到了问题的所在,于是他们发明

了罗马数字Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ,Ⅸ,Ⅹ,L,C分别表示

1,2,3,4,5,6,7,8,9,10,50,100。看来似乎问题得到了解决,

然而要表示一万还是十分困难。这也是罗马数字没有被广泛采用的原因。

罗马数字的失败表明,任何想使每一个数字对应一个符号的记数方法都

是徒劳的。直到公元八世纪印度人发明了一种只含有1,2,3,4,5,6,

7,8,9,九个符号的记数法,并且约定数字位置决定数值大小。例如数

字89中8表示八个十,而9表示九个一。这样一来表示任何数都是轻而一

举的事情了。于是,这一发明很快被商人带入阿拉伯首都巴格达城。并

很快得以流传,并称之为阿拉伯数字。由于这一记数法简洁明了,而被

使用至今。成为世界数学的通用语言。难怪恩格斯称它为“最美妙的发

明”。

*************************

阿拉伯数字的由来

世界各国数字的方法有很多种,其中一种数字是国际上通用的,这就是阿拉伯数字:0、1、2、3、4、5、6、7、8、9。

其实,阿拉伯数字并不是阿拉伯人发明的,而是古代印度人创造的。

古时候,印度人把一些横线刻在石板上表示数,一横表示1,二横表示2……后来,他们改用棕榈树叶或白桦树皮作为书写材料,并把一些笔画连了起来,例如,把表示2的两横写成Z,把表示3的三横写成等。

公元8世纪,印度一位叫堪克的数学家,携带数字书籍和天文图表,随着商人的驼群,来到了阿拉伯的首都巴格达城。这时,中国的造纸术正好传入阿拉伯。于是,他的书籍很快被翻译成阿拉伯文,在阿拉伯半岛上流传开来,阿拉伯数字也随之传播到阿拉伯各地。

随着东西方商业的往来,公元12世纪,这套数字由阿拉伯商人传入欧洲。欧洲人很喜爱这套方便适用的记数符号,他们以为这是阿拉伯数字,造成了这一历史的误会。尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。

阿拉伯数字传人欧洲各国后,由于辗转传抄,模样儿也逐渐发生了变化,经过1000多年的不断改进,到了1480年时,这些数字的写法才与现在的写法差不多。1522年,当阿拉伯数字在英国人同斯托的书中出现时,已经与现在的写法基本一致了。

由于阿拉伯数字及其所采用的十进位制记数法具有许多优点,因此逐渐传播到全世界,为世界各国所使用。

**********************************

阿拉伯数字的由来

古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

************************

罗马数字的由来

罗马数字是一种现在应用较少的数量表示方式。它的产生晚於中国甲骨文中的数码,更晚於埃及人的一进位数字。但是,它的产生标志著一种古代文明的进度。大约在两千五百年前,罗马人还处在文化发展的初期,当时他们用手指作为计算工具。为了表示1、2、3、4个物体,就分别伸出1、2、3、4根手指;表示5个物体就伸出一只手;表示10个物体就伸出两只手。这种习惯,人类一直沿用到今天。人们在交谈中,往往就是运用这样的手势来表示数字的。当时,罗马人为了记录这些数字,便在羊皮上画出Ⅰ、Ⅱ、Ⅲ来代替手指的数,要表示一只手时,就写成"Ⅴ",表示大拇指与食指张开的形状;表示两只手时,就画成"ⅤⅤ",后来又写成一只手向上,一只手向下的"Ⅹ",这就是罗马数字的雏形。

之后为了表示较大的数,罗马人用符号C表示100,C是拉丁字"Century"的头一个字母,century就是100的意思。用符号M表示1000。M是拉丁字"mile'的头一个字母,mile就是1000的意思。取字母C的一半成为符号L,表示50。用字母D表示500。若在数的上面画一横线,这个数就扩大1000倍。这样,罗马数字就有下面七个期本符号:I(1)V(5)X(10)L(50)C(100)D(500)M(1000)

罗马数字与十进位数字的意义不同,它没有表示零的数字,与进位制无关。用罗马数字表示数的基本方法一般是把若干罗马数字写成一列,它表示的数等於各个数字相加的和。但是也有例外,当符号I、X或C位於大数的后面时就作为加数;位於大数的前面就作为减数。

例如:Ⅲ=3,Ⅳ=4,Ⅵ=6,XIX=19,XX=20,XLV=45,MCMXXC=1980。

罗马数字因书写繁难,所以后人很少采用,现在有的钟表仍用其表示时数。此外在书稿章节及科学分类时也会采用。

********************************************

通常,我们把1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。可是人们为什么又把它们称为“阿拉伯数字”呢?据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,其中东都巴格达更胜一筹。这样,西来的希腊文化,东来的印度文化,都汇集于此。阿拉伯人将两种文化理解并消化,形成了新的阿拉伯文化。

*************************

汉字大写数字的来历

人们在经济往来中,都要与数字打交道。如使用帐册、支票、发票,到邮局汇款,去银行办理存款取款手续,金额都要使用汉字大写,目的是防止金额涂改作弊。使用汉字大写数字,防止贪污作弊,始于我国明朝初年。

农民出身的皇帝朱元璋执政时期,曾发生过一起郭桓重大贪污案。郭桓曾任户部侍郎,在任职期间,勾结地方官吏,大肆贪污政府钱粮,贪污数额累计达2400万石精粮,几乎和当时一年的秋粮实征总数相等。这一大案牵涉十二个朝廷大臣和数万地方官吏。朱元璋对此大为震惊,下令将郭桓及数万名同案犯全部斩首示众。同时,制定了严格的惩治贪污的法令,为了杜绝财务混乱,对全国财政管理实行了一些有效的措施,其中重要的一条就是把记载钱粮数字的汉字“一、二、三、四、五、六、七、八、九、十、百、千”改用“壹、贰、叁、肆、伍、陆、柒、捌、玖、拾、陌、阡”。人们在使用过程中,渐渐地把“陌、阡”改成了“佰、仟”。这一方法的实行,堵住了一些帐务管理上的漏洞,对巩固新生的明朝政权,起到了一定的作用。这些汉字大写数字,一直沿用至今,并且在我国的经济生活中起着重要的作用。

关于数字的小常识

1.语文里的数字小常识

语文里的数字小常识 1.【求一些数学小知识一定要在200字以内.100字以上,要么别回答

数学符号的起源数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系.数学符号的发明和使用比数字晚,但是数量多得多.现在常用的有200多个,初中数学书里就不下20多种.它们都有一段有趣的经历.例如加号曾经有好几种,现在通用"+"号."+"号是由拉丁文"et"("和"的意思)演变而来的.十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号."-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了.到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号.乘号曾经用过十几种,现在通用两种.一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"·",最早是英国数学家赫锐奥特首创的.德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"·"号.他自己还提出用"п"表示相乘.可是这个符号现在应用到***论中去了.到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号.他认为"*"是"+"斜起来写,是另一种表示增加的符号."÷"最初作为减号,在欧洲大陆长期流行.直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除.后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号.十六世纪法国数学家维叶特用"="表示两个量的差别.可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来.1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受.十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等.大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用.至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了.大括号"{}"和中括号"[ ]"是代数创始人之一魏治德创造的.数学的起源和早期发展:数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识.。

2.关于数字的一些小知识

数字的由来数字可谓是数学大厦的基石,也是人们最早研究的数学对象。

在几百万年前。我们的祖先还只知道“有”、“无”、“多”、“少”的概念,而不知道数为何物。

随着文明的进步,这些模糊不清的概念无法满足生产、生活的需要。例如我国古书《周易》上就有“上古结绳而治”的载。

即当发生一次重要事件时,就在绳子上打一个结作为标记。这种方法虽然简单,但至少表明人们已经有了数的概念。

文字出现以后,人们试图数学以符号的形式记录下来。于是就出现了各种种样的记录方法。

古埃及人用“|”表示一,用“‖”表示二;古罗马人用“Ⅰ”表示一,用“Ⅱ”表示二。这种方法虽然有效,但是当数字很大时记录起来十分不便。

例如我们要表示一百时,难道要写一百个“|”吗?当然,古罗马人也看到了问题的所在,于是他们发明了罗马数字Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ,Ⅸ,Ⅹ,L,C分别表示 1,2,3,4,5,6,7,8,9,10,50,100。看来似乎问题得到了解决,然而要表示一万还是十分困难。

这也是罗马数字没有被广泛采用的原因。罗马数字的失败表明,任何想使每一个数字对应一个符号的记数方法都是徒劳的。

直到公元八世纪印度人发明了一种只含有1,2,3,4,5,6, 7,8,9,九个符号的记数法,并且约定数字位置决定数值大小。例如数字89中8表示八个十,而9表示九个一。

这样一来表示任何数都是轻而一举的事情了。于是,这一发明很快被商人带入***首都巴格达城。

并很快得以流传,并称之为***数字。由于这一记数法简洁明了,而被使用至今。

成为世界数学的通用语言。难怪恩格斯称它为“最美妙的发明”。

****************************数字的由来世界各国数字的方法有很多种,其中一种数字是国际上通用的,这就是***数字:0、1、2、3、4、5、6、7、8、9。其实,***数字并不是***人发明的,而是古代印度人创造的。

古时候,印度人把一些横线刻在石板上表示数,一横表示1,二横表示2……后来,他们改用棕榈树叶或白桦树皮作为书写材料,并把一些笔画连了起来,例如,把表示2的两横写成Z,把表示3的三横写成等。公元8世纪,印度一位叫堪克的数学家,携带数字书籍和天文图表,随着商人的驼群,来到了***的首都巴格达城。

这时,中国的造纸术正好传入***。于是,他的书籍很快被翻译成***文,在***半岛上流传开来,***数字也随之传播到***各地。

随着东西方商业的往来,公元12世纪,这套数字由***商人传入欧洲。欧洲人很喜爱这套方便适用的记数符号,他们以为这是***数字,造成了这一历史的误会。

尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。***数字传人欧洲各国后,由于辗转传抄,模样儿也逐渐发生了变化,经过1000多年的不断改进,到了1480年时,这些数字的写法才与现在的写法差不多。

1522年,当***数字在英国人同斯托的书中出现时,已经与现在的写法基本一致了。由于***数字及其所采用的十进位制记数法具有许多优点,因此逐渐传播到全世界,为世界各国所使用。

*************************************数字的由来古代印度人创造了***数字后,大约到了公元7世纪的时候,这些数字传到了***地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对***数字做了详细的介绍。

后来,这些数字又从***地区传到了欧洲,欧洲人只知道这些数字是从***地区传入的,所以便把这些数字叫做***数字。以后,这些数字又从欧洲传到世界各国。

***数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以***数字当时在我国没有得到及时的推广运用。

本世纪初,随着我国对外国数学成就的吸收和引进,***数字在我国才开始慢慢使用,***数字在我国推广使用才有100多年的历史。***数字现在已成为人们学习、生活和交往中最常用的数字了。

************************罗马数字的由来罗马数字是一种现在应用较少的数量表示方式。它的产生晚於中国甲骨文中的数码,更晚於埃及人的一进位数字。

但是,它的产生标志著一种古代文明的进度。大约在两千五百年前,罗马人还处在文化发展的初期,当时他们用手指作为计算工具。

为了表示1、2、3、4个物体,就分别伸出1、2、3、4根手指;表示5个物体就伸出一只手;表示10个物体就伸出两只手。这种习惯,人类一直沿用到今天。

人们在交谈中,往往就是运用这样的手势来表示数字的。当时,罗马人为了记录这些数字,便在羊皮上画出Ⅰ、Ⅱ、Ⅲ来代替手指的数,要表示一只手时,就写成"Ⅴ",表示大拇指与食指张开的形状;表示两只手时,就画成"ⅤⅤ",后来又写成一只手向上,一只手向下的"Ⅹ",这就是罗马数字的雏形。

之后为了表示较大的数,罗马人用符号C表示100,C是拉丁字"Century"的头一个字母,century就是100的意思。用符号M表示1000。

M是拉丁字"mile'的头一个字母,mile就是1000的意思。取字母C的一半成为符号L,表示50。

用字母D表示500。若在数的上面画一横线,这个数就扩大。

3.小学趣味语文知识:数字猜成语

小学趣味语文知识:数字猜成语:

根据下列数字猜一个成语

1. 12345690

提示:仔细观察数字,看看缺少了哪些呢?

2. 1256789

提示:这道题是不是和上一题有异曲同工之妙呢?

3. 1+2+3

提示:这可不是一道数学题啊,答案就藏在题目中。

4. 33335555

提示:看!又是3又是5,而且还不是单独出现的呢。

5. 3.5

提示:这个数字好特别,是介于两个整数中的数字。

6. 5 10

提示:仔细瞧一瞧,它们分别是几。

7. 9寸+1寸=1尺

提示:这道题中出现了什么?对,出现了单位!动动脑筋吧。

【答案】

1.七零八落

2.丢三落四

3.接二连三

4.三五成群

5.不三不四

6.一五一十

7.得寸进尺

4.小学数学知识集锦

1、每份数*份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数*倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度*时间=路程路程÷速度=时间路程÷时间=速度 4、单价*数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率*工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 1、正方形 C周长 S面积 a边长周长=边长* 4 C=4a面积=边长*边长 S=a*a 2、正方体 V:体积 a:棱长表面积=棱长*棱长*6 S表=a*a*6体积=棱长*棱长*棱长 V=a*a*a 3、长方形 C周长 S面积 a边长周长=(长+宽)*2 C=2(a+b)面积=长*宽 S=ab 4、长方体 V:体积 s:面积 a:长 b:宽 h:高(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh)(2)体积=长*宽*高 V=abh 5、三角形 s面积 a底 h高面积=底*高÷2 s=ah÷2三角形高=面积*2÷底三角形底=面积*2÷高 6、平行四边形 s面积 a底 h高面积=底*高 s=ah 7、梯形 s面积 a上底 b下底 h高面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8、圆形 S面积 C周长∏ d=直径 r=半径(1)周长=直径*∏=2*∏*半径 C=∏d=2∏r(2)面积=半径*半径*∏ 9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长*高(2)表面积=侧面积+底面积*2(3)体积=底面积*高(4)体积=侧面积÷2*半径 10、圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积*高÷3总数÷总份数=平均数 11和差问题的公式(和+差)÷2=大数(和-差)÷2=小数 12和倍问题和÷(倍数-1)=小数小数*倍数=大数(或者和-小数=大数) 13差倍问题差÷(倍数-1)=小数小数*倍数=大数(或小数+差=大数) 14植树问题 1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那:株数=段数+1=全长÷株距-1全长=株距*(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样:株数=段数=全长÷株距全长=株距*株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距*(株数+1)株距=全长÷(株数+1) 2封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距*株数株距=全长÷株数 15盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数 16相遇问题相遇路程=速度和*相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间 17追及问题追及距离=速度差*追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间 18流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2 19浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量*100%=浓度溶液的重量*浓度=溶质的重量溶质的重量÷浓度=溶液的重量 20利润与折扣问题利润=售出价-成本利润率=利润÷成本*100%=(售出价÷成本-1)*100%涨跌金额=本金*涨跌百分比折扣=实际售价÷原售价*100%(折扣利息=本金*利率*时间税后利息=本金*利率*时间*(1-20%)。

5.小学数学关于数字的知识

(一)整数 1、分类:自然数、0、…… 2、读、写法→数的改写:⑴以“万”或“亿”作单位的数。

例:7645000=764.5万;146000000=1.46亿⑵省略“万”或“亿”后面的尾数。例:7645000≈765万;146000000≈1亿 3、大小比较 4、四则运算的意义和法则⑴加法意义:把两个数合并成一个数的运算叫做加法。

法则:相同数位对齐,从个位数加起,哪一位上的数满十就要向前一位进一。⑵减法意义:已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。

法则:相同数位对齐,从个位减起,哪一位上的数不够减,从前一位退一,在本位上加十再减。⑶乘法意义:求几个相同加数和的简便运算叫做乘法。

法则:乘数是两位数的乘法,①先用乘数个位上的数去乘被乘数,得数的末位和乘数的个位对齐;②再用乘数十位上的数去乘被乘数,得数的末位和乘数的十位对齐;③最后把两次乘得的积加起来。⑷除法意义:已知两个因数的积与其中的一个因数,求另一个因数的运算叫做除法。

法则:除数是两位数的除法,①从被除数的高位起,先用除数试除被除数的前两位数,如果它比除数小再试除前三位数;②除到被除数的哪一位,就在那一位上面写商;③每次除后余下的数必须比除数小。 5、运算定律和性质⑴定律①加法交换律 a+b=b+a②加法结合律(a+b)+c=a+(b+c)③乘法交换律 ab=ba④乘法结合律(ab)c=a(bc)⑤乘法分配律(a+b)c=ac+bc⑵性质①商不变的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

②减法的性质:从一个数中连续减去两个数等于从这个数中减去这两个数的和。 a-b-c=a-(b+c) 6、四则混合运算⑴第一级运算:通常把加减法叫做第一级运算。

⑵第二级运算:通常把乘除法叫做第二级运算。在一个没有括号的算式里,如只含有同一级运算要从左往右依次计算。

(如例1、例2)例1:520-160+240-380=360+240-380=600-380=220例2:125*80÷25*40=10000÷25*40=400*40=16000⑶不带括号的:一个算式里,如果含有两级运算,要先做第二级运算,在做第一级运算。(如例3)⑷带小括号的:一个算式里,如果有括号,要先算括号里面的,再算括号外面的。

(如例4)⑸带中、小括号的:一个算式里,如果有中括号和小括号,要先算小括号里面的,再算中括号里面的。(如例5)例3:920-800÷20*5=920-40*5=920-200=720例4:(42*150-70)÷70=(6300-70)÷70=6230÷70=89例5:[3440-(150-70)]÷70=[3440-80]÷70=3360÷70=48 7、整除⑴倍数→公倍数→最小公倍数(例:24、48……都是8和12的公倍数;其中24是8和12的最小公倍数)⑵约数→公约数→最大公约数(例:1、2、3、6都是18和24的公约数,其中6是18和24的最大公约数)质数→合数→互质数(公约数只有1的两个数,叫做互质数。

例:5和7是互质数)质因数→分解质因数(把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例:42=2*3*7)⑶能被2、5、3整除的数的特征:能被2整除的数的特征(个位上是0、2、4、6、8的数都能被2整除)能被5整除的数的特征(个位上是0或5的数都能被5整除)能被3整除的数的特征(一个数的各位数上的数字和能被3整除,这个数就能被3整除)⑷偶数和奇数①偶数(能被2整除的数叫做偶数,如:2、4、6、8、10……)②奇数(不能被2整除的数叫做奇数,如:1、3、5、7、9……)(二)小数 1、小数的意义:分母是10、100、1000……的十进制分数,改写成不带分母形式的数,叫做小数。

2、小数的读、写法⑴小数的读法:读小数的时候,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作“点”,小数部分通常顺次读出每一个数位上的数字。例:6.5读作六点五;0.04读作零点零四。

⑵小数的写法:写小数的时候,整数部分按照整数的写法来写(整数部分是零的写作“0”),小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。例:四点三九写作:4.39;三十点零一五写作:30.015。

3、小数的分类⑴按整数部分情况分:纯小数、带小数;⑵按小数部分情况分:有限小数、无限小数;无限小数分为:循环小数和不循环小数。循环小数:例2.3333……写成2.3(选学) 4、小数大小的比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大…… 5、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。

6、小数与分数的相互改写。 7、小数点位置的移动引起小数大小的变化。

8、四则运算的意义和法则。(同整数) 9、运算定律和性质。

(整数运算定律和性质对小数同样适用) 10、四则混合运算。(同整数四则混合运算)(三)分数 1、分数的意义:把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。

2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

3、分数与除法的关系:被除数相当于分数。

6.寻几个关于数学和语文的小故事或小知识

大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。

而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。

但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

小朋友你们可知道数学天才高斯小时候的故事呢?

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

1+2+3+。..+97+98+99+100=?

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把 1加至 100与 100加至 1排成两排相加,也就是说:

1+2+3+4+。..+96+97+98+99+100

100+99+98+97+96+。..+4+3+2+1

=101+101+101+。..+101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100除以 2便得到答案等于<5050>

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱……

下面就是一个小故事,是一个数字之间的故事。

有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。

0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”

0的兄弟姐妹们一口齐声的说:“好啊。”

8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”

老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”

于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”

在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?

唐僧师徒摘桃子

一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?

八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?

唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?

关于数字小知识,关于数字的一些小知识的介绍到此结束,希望对大家有所帮助。