设函数f(x)=sinx-cosx+x+1 0<x<2π。求函数的单调区间与极值.f(x)=sinx-cosx+x+1可化为f(x)=根号2s
f(x)=sinx-cosx+x+1可化为
f(x)=根号2 sin(x-π/4)+x+1
其导数f'(x)=根号2cos(x-π/4)+1
求其单调递增区间令f'(x)>0得到0<x<π或3π/2<x<2π
求其单调递减区间令f'(x)<0 得到π<x<3π/2
在x=π处取得极大值f(π)=2+π
在x=3π/2处取得极小值f(3π/2)=3π/2
sin(x+π/4)<-√2/2
kπ-3π/4<x+π/4<kπ-π/4
则2kπ-π<x<2kπ-π/2 (k∈Z)
问下这个是怎么来的,为什么 kπ-3π/4<x+π/4<kπ-π/4
相关内容
- 设函数f<x>=√(e^x+x-a)[a∈R,e为自然对数的底数],
- 设函数f(lgx)的定义域是【0.1,100】,求函数f(x/2)的定义域
- 设函数f(x)=(2-a)lnx+1/x+2ax.
- 设函数f(x)=(a2+4a-5)-4(a-1)x+3的图像都在x轴的上方,求实数a的取值范围
- 设函数f(x)=(ax+b)/(x^2+1)的值域为【-1,4】,求a,b的值。
- 设函数f(x)=-x 1+|x| (x∈R),区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数
- 设函数f(x)=1/3x³-ax(a>0),g(x)=bx²+2b-1,若函数y=f(x)与曲线y=g(x)在它们的焦点(1,c)
- 设函数f(x)=1/3x^3-a/2x^2+bx+c,,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为