解方程:6的x次方加4的x次方等于9的x次方
4^x+6^x=9^x
(4/6)^x+1=(9/6)^x
(2/3)^x+1=(3/2)^x
((2/3)^x)^2+(2/3)^x-1=0
设(2/3)^x=a
则:a^2+a-1=0,a>0
a=(√5-1)/2
即:(2/3)^x=(√5-1)/2
x=log(2/3)[(√5-1)/2]
4^x+6^x=9^x
方程两边同除以6^x
1+(2/3)^x=((2/3)^x)^(-1)
设t=(2/3)^x ( t>0)
原方程变为
1+t=1/t
t²+t-1=0
t=(根号5-1)/2 (t>0剔除负根)
则(2/3)^x=(根号5-1)/2
x=log[(2/3),(根号5-1)/2]
两边同除以9^x:
(6/9)^x+(4/9)^x=1
(2/3)^x+[(2/3)^x]^2=1
令t=(2/3)^x>0
t^2+t-1=0
t1=(-1-√5)/2<0,舍去
t2=(√5-1)/2
即(2/3)^x=(√5-1)/2
x=log(2/3)【(√5-1)/2】= { lg(√5-1)-lg2} / (lg3-lg2)