一次函数的定义性质
函氏猜数的基本概念:一般歼陆型地,在某一变化过程中,有两个变量x和y,如果给定一个X值,相应地就确定了唯一一个Y值与X对应,那么我们称Y是X的函数(function).其中X是自变量,Y是因变量,也就是说Y是X的函数。当x=a时,函数的值叫做当x=a时的函数值。
[编辑本段]定义与定义式
自变量x和因变量y有如下关系:
y=kx (k为任意不为零实数)
或y=kx+b (k为任意不为零实数,b为任意实数)
则此时称y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。正比例是Y=kx+b。
即:y=kx (k为任意不为零实数)
定义域:自变量的取值范围,自变量悉搏的取值应使函数有意义;要与实际相符合。
[编辑本段]一次函数的性质
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k≠0) (k不等于0,且k,b为常数)
2.当x=0时,b为函数在y轴上的截距。
3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角)
形。取。象。交。减
4.正比例函数也是一次函数.
5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k,b都相同时,两条线段重合。