设A是3阶实对称矩阵,秩为2,若A^2=A,则A的特征值为?详细解析
秩为2,也就意味着3阶实对称矩阵A有两个扒闷氏不同的特征值,其中一个是重特征值。
A^2=A A^2-A=0 λ^2-λ=0 λ(λ-1)=0 λ=0或者λ=1
当λ=0为矩阵A的二重特征罩裤根时,λ1=λ2=0 ,λ3=1,但此时矩阵A的秩为1,所以不成立。
当λ=1为矩阵A的二重春散特征根时,λ1=λ2=1,λ3=0,此时矩阵A的秩为2,符合题意。
设λ是A的特征值
则 λ^2-λ 是A^2-A 的特征值
而 A^-A=0, 零矩阵的特征渗简值只能是0
所以 λ^2-λ=0
所胡袭以 λ=0 或 1
即 A 的特征值只能是0,1
又由已知A是实对称矩阵, 故A可对角化丛做裤, 对角线元素由0,1组成
再由 r(A)=2, 所以 A 的特征值为 1,1,0.
设p是a的信宽物任一特征值,a是a属于p的特征向量,于是有
(a^4-3a^3+3a^2-2a)a=(p^4-3p^3+3p^2-2p)a=0,即
p(p-2)(p^2-p+1)=0
因为实对称矩阵特征值必为实数,所以a的特征值只能是0或2,又因为必可对角化,故特征值为滑液巧碧
2(2重),0(n-r重)
实对称矩阵一定可对角化的。
相关内容
- 设a b c 为非零向量 w=a/(a的绝对值)+b/(b的绝对值)+c/(c的绝对值) 则w的绝对值的取值范围为
- 设A B为随机事件 P(A)=0.8 P(AB)=0.3 则P(A-B)=
- 设a²+2a-1=0,b四次方-2b²-1=0,且1-ab²≠0
- 设a>0>b>c,a+b+c=1.m=(b+c)/a,n=(a+c)/b,p=(a+b)/c,比较m,n,p的大小,解释一下
- 设a>0,0<x<2π,若函数y=cos2x-asinx+b的最大值为0,最小值为-4,试求a与b的值
- 设a>0,函数f(x)=0.5x^2-(a+1)x+alnx,(1)若函数y=f(x)在(2,f(2))处切线斜率为-1,求a值(2)求函数的极值(1)f'(x)=x-(a+1)+a/x=(x-a)
- 设a>b>0,下列不等式中不正确的是 A.ab<(a^2+b^2)/2 B.ab<[a+b)/2]^2 C.2ab/(a+b)>√ab D.√ab>2ab/(a+b)
- 设A(x1,y1), B(x2,y2)两点在抛物线y=2x^2上,l是AB的垂直平分线, 当x1+x2取何值时,直线l经过抛物线的焦点F