设随机变量x的概率密度函数为f(x),且f(x)=f(-x)
则对于任意实数a
有 F(-a)=1/2-积分0到a f(x)dx
为什么?
因为f(x)是随机变量x的概率密度函数
所以 ∫f(x)d(x)│(x=- ∞ to +∞)=1
又因为 f(磨含轿x)=f(-x)
所以 ∫f(x)d(x)│(x=- a to 0)=∫瞎肆f(x)d(x)│(x=0 to a )
F(0)=∫f(x)d(x)│老纳(x=- ∞ to 0)=∫f(x)d(x)│(x=0 to +∞ )=(1/2)*∫f(x)d(x)│(x=- ∞ to +∞)=1/2
F(-a)=∫f(x)d(x)│(x=- ∞ to -a)=∫f(x)d(x)│(x=- ∞ to 0)-∫f(x)d(x)│(x=- a to 0)=1/2-∫f(x)d(x)│(x=0 to a )
相关内容
- 设随即变量X1,X2,X3,X4独立同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4)求行列式X1X4-X2X3的概率分布
- 设随机变量(X,Y)的联合概率密度分别如下,f(x,y)=ke^-(x+2y),x,y>0;f(x,y)=0, 1:求常数K
- 设随机变量(ξ,η)的联合概率密度为f(x,y)=4xy,0<x,y<1;0,其他 问P(X=Y)的概率
- 设随机变量X , Y 相互独立, 且X~b(10,0.3) , Y~b(10,0.4) , 则 E(2X-Y)~2=
- 设随机变量X,Y相互独立,X服从λ=5的指数分布,Y在[0,2]上服从均匀分布,求概率P(X≥Y) 详细过程
- 设随机变量X~N(1,2^2),Y~N(0,1),且X,Y相互独立,试求Z=2X-Y的分布
- 设随机变量x~u(0,1),试求:(1)y=e^x的分布函数及密度函数
- 设随机变量X与Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数为1的指数分布,求随机变量Z=X+Y的概率密度