概率知识 概率论三大定律

今天给各位分享概率小知识的一些知识,其中也会对概率论三大定律进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!

简单事件的概率知识点

一、事件的可能性

随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。

二、简单事件的概率

1.必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;

2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;

3.确定事件:必然事件和不可能事件都是确定的;

4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

三、用频率估计概率

1、利用频率估计概率

在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。

四、概率的简单应用

1.有些随机事件不可能用树状图和列表法求其发生的概率,只能用试验、统计的方法估计其发生的概率。

2.对于作何一个随机事件都有一个固定的概率客观存在。

3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:

(1)尽量经历反复实验的过程,不能想当然的作出判断;

(2)做实验时应当在相同条件下进行;

(3)实验的次数要足够多,不能太少;

统计和概率小学知识点

一、统计一词有三种涵义:

1、统计资料,是反映大量现象的状态和规律性的数字资料及有关文字说明。

2、统计工作,是关于搜集、整理、分析统计资料并进行推论以探求事物本质和规律性的活动。

3、统计科学,是研究如何搜集、整理和分析研究大量现象的数量资料并推论其本质和规律性的理论和方法,如社会经济统计学、数理统计学。

二、概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。

扩展资料:

一、概率事件

在一定的条件下可能发生也可能不发生的事件,叫做随机事件。

通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做等可能事件。

互斥事件:不可能同时发生的两个事件叫做互斥事件。

对立事件:即必有一个发生的互斥事件叫做对立事件。

二、统计特征

1、总体性

统计学的认识对象是社会经济现象的总体的数量方面。从总体上研究社会经济现象的数量方面,是统计学区别于其他社会科学的一个主要特点。如国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。

2、具体性

社会经济统计的认识对象是具体事物的数量方面,而不是抽象的数量关系。这是统计与数学的区别。

3、社会性

社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,具有明显的社会性。统计学研究社会经济现象,这一点与自然技术统计学有所区别。

参考资料来源:百度百科-概率

参考资料来源:百度百科-统计

概率论三大定律

概率论三大定律是:伯努利大数定律、中心极限定理、辛钦大数定律

依据考研数学的安排,在学习大数定律之前引入这样两个先修知识点:(1)切比雪夫不等式:,对任意的ε>0.它的意义是:事件大多会集中在它的期望附近

(2)依概率收敛:如果xn是一个随机变量序列、A是一个常数,对任意的ε>0,有则称Xn依概率收敛于常数A

依概率收敛并不同于传统意义上的“实验无数次后频率会无限靠近概率”,它实际上在概率附近划出了一个小的边界ε。实验结果当然可能发生波动,这个边界的作用就是把波动限制在一个很小的范围内。即使超出这个边界,也只是一个小概率事件。(小概率事件是指在一次实验中几乎不可能发生的事件,而在重复实验中一定会发生。)

接着看大数定律:(1)切比雪夫大数定律:这里显然是不严谨的,因为为了方便表述我们省略掉了一些前提条件,好在并不影响对于这个定律本身的理解。

它的数学意义显而易见:算数平均值依概率收敛于数学期望。当我们中学做的物理实验中采用多次实验取平均值的方法来减小误差时,实际上理论依据就是切比雪夫大数定律。

(2)伯努利大数定律:伯努利大数定律的条件是Xn服从B(n,p),也就是说Xn是n重伯努利实验中事件发生的次数,它的数学意义是频率依概率收敛于统计概率。伯努利大数定律实际上是切比雪夫大数定律的一种特殊情况。

(3)辛钦大数定律:辛钦大数定律在表述上和切比雪夫相差不多,但它的特点在于要求Xi独立同分布,并且要存在期望。

(4)棣莫弗——拉普拉斯中心极限定理设随机变量Xn服从B(n,p),则对于任意实数x,有,其中φ(x)是标准正态的分布函数。结论:Xn近似服从于N(np,np(1-p))

(5)列维——林德伯格中心极限定理,条件:Xn独立同分布、期望和方差存在,有结论:近似服从于N(nμ,n)

我们先给出这两个中心极限定理,可能不太好懂,好在他们之间有很深的关系,或者说棣莫弗实际是列维的特殊情况(服从B(n,p))。有了上述的两个中心极限定理,我们就可以在n很大的情况下把任意一个复杂的分布近似地看作一个正态分布,大大减少了分析的难度

文章分享结束,概率小知识和概率论三大定律的答案你都知道了吗?欢迎再次光临本站哦!