如图 AB是⊙0的直径 OC⊥AB D是弧AB上任一点 e是弦BD上一点 且BE=AD 试判断△CDE的形状 并加以证明
如图 AB是⊙0的直径 OC⊥AB D是弧AB上任一点 e是弦BD上一点 且BE=AD 试判断△CDE的形状 并加以证明
解:连接AC、BC,
由圆周角定理得∠CBE=∠CAD,
∵CO⊥AB,
∴点C是弧ABC的中陵销点,
∴AC=BC,
又∵BE=AD
∴△ACD≌DCE,
∴CD=CE.∠ADC=∠BEC,
∵AB是直径,
∴∠ADB=90°,
∵∠BEC=∠DCE+∠CDB,∠ADC=∠ADB+∠CDB,
∴∠裂汪凯DCE=∠ADB=90°,
即△肆唤DCE是等腰直角三角形.
连接BC
因为:
1、BE=AD
2、AC=BC
3、角CAD=角CBD (同为弧桐竖燃CD的圆周角)
所以三角形 ADC与三角形BCE全等,所以CD=CE。
等腰三角形
唉,按楼上的吧,漏了直角的问题,关纤激于直角可以这么弄
∠DCE=∠ACB+∠ACD-局虚∠BCE=∠ACB=90度
相关内容
- 如图 ,在RT三角形中,角ABC=90度,D E F分别是AB BC CA的中点,若CD=5CM,则EF=
- 如图 ,在三角形ABC中AC等于AB,点O是BC的中点,AC切圆O于D,求证:AB是圆O的切线
- 如图 abcd为正方形 e为bc上一点 将正方形折叠 使a点与e点重合,折痕为mn,若tan角ae
- 如图 AB是⊙0的直径 OC⊥AB D是弧AB上任一点 e是弦BD上一点 且BE=AD 试判断△CDE的形状 并加以证明
- 如图 AB是圆O的直径 BC⊥AB于点B,连接OC交圆O于点E,弦AD平行于OC,弦DF⊥AB于点c
- 如图 ab是圆o的直径,P为AB延长线上的任意一点,C为半圆ABC的中点,PD切园O於D,连接CD交AB於点E
- 如图 ab是圆o的直径,点C在园O上运动与AB两点不重合,弦CD垂直AB,CP平分∠OCD交点P
- 如图 AD是三角形ABC的角平分线,DE平行AC交点AB于E,DF平行AB交AC于F,它是菱形吗?