dy/dx=(x+y^3)/(xy^2) 求解
解:∵dy/dx=(x+y^3)/(xy^2)
==>xy^2dy=(x+y^3)dx
==>y^2dy/则局租x^3=dx/x^3+y^3dx/x^4 (等式两端同除x^4)
==>孙兆d(y^3)/(3x^3)+y^3d(1/(3x^3))+d(1/(2x^2))=0
==>d(y^3/(3x^3))+d(1/(2x^2))=0
==>y^3/(3x^3)+1/(2x^2)=C/6 (C是常数)
==>2y^3+3x=Cx^3
∴原方程的通腊返解是2y^3+3x=Cx^3。
跟发货后也有以后会发货后以后坚实的