设A是n阶实对称矩阵,证明A是正定矩阵的充分必要条件是A的特征值都大于0
证: A是n阶实对称矩阵, 则存在正交矩阵P, P'=P^-1
满足樱蠢: P'AP = diag(a1,a2,...,an). 其中a1,a2,...,an是A的全部特征值
则A对应世族的二次型为搜颂弊:
f = X'AX
令 X=PY 得
f = Y'P' APY = Y'diag(a1,a2,...,an)Y = a1y1^2+...+any^n
所以 A正定 <=> f 正定 <=> ai>0.
即 A是正定矩阵的充分必要条件是A的特征值都大于0.
满意请采纳^_^
不好意思啊,我才高中毕业。
相关内容
- 设a b c 为非零向量 w=a/(a的绝对值)+b/(b的绝对值)+c/(c的绝对值) 则w的绝对值的取值范围为
- 设A B为随机事件 P(A)=0.8 P(AB)=0.3 则P(A-B)=
- 设a²+2a-1=0,b四次方-2b²-1=0,且1-ab²≠0
- 设a>0>b>c,a+b+c=1.m=(b+c)/a,n=(a+c)/b,p=(a+b)/c,比较m,n,p的大小,解释一下
- 设a>0,0<x<2π,若函数y=cos2x-asinx+b的最大值为0,最小值为-4,试求a与b的值
- 设a>0,函数f(x)=0.5x^2-(a+1)x+alnx,(1)若函数y=f(x)在(2,f(2))处切线斜率为-1,求a值(2)求函数的极值(1)f'(x)=x-(a+1)+a/x=(x-a)
- 设a>b>0,下列不等式中不正确的是 A.ab<(a^2+b^2)/2 B.ab<[a+b)/2]^2 C.2ab/(a+b)>√ab D.√ab>2ab/(a+b)
- 设A(x1,y1), B(x2,y2)两点在抛物线y=2x^2上,l是AB的垂直平分线, 当x1+x2取何值时,直线l经过抛物线的焦点F