设A(x1,y1),B(x2,y2)是函数f(x)=1/2+log2(x/(1-x))的图像上的任意两点,向量om=1/2(oa+ob),


点m的横坐标为1/2,求点M的纵坐标
f(x)=1/2+log2(x/(1-x)) = 1/2 + logx - log(1-x)
(其中log为以2为底数)
f(1-x) = 1/2 + log(1-x) -log(x)
f(x)+f(1-x) =1 ---1
m=1/码州雹2所以oa,ob横坐标的和为1 (根据om = (oa+ob)/2)
所以oa,ob 的综坐标和为1(根据迟帆1式)
所以M的纵坐标=1/2(迹脊根据om = (oa+ob)/2)
A(x1,1/2+log2(x1/谨胡(1-x1)) B(x2,1/2+log2(x2/(1-x2))
OM=1/2*(OA+OB)=1/2*(x1+x2,1+log2(x1x2/(1-x1-x2+x1x2)))
1/2*(x1+x2)=1/2 x1+x2=1
M的纵坐标=1/2*(1+log2(x1/仔晌数x2/念首(1-1+x1x2)))=1/2
答案是1