设随机变量X的概率密度为f(x)=ae^(-|x|),-∞<x< +∞,求:(1)常数a;(2)P{0≤x≤1};(3) x的分布函


如题
(1)
f(x)=ae^(x) ,x≤0 ;
f(x)=ae^(-x),x>0
由概率密度函数的性质得
∫庆隐ae^xdx(积分区间为负无穷到0)=1/2
得a=1/2
(2)
F(x)=(1/誉宽厅2) (e^x),x≤0
F(x)=1-(1/巧局2)e^(-x),x>0
代入P{0≤x≤1}=F(1)-F(0)=(1/2)(1-1/e)
或者P{0≤x≤1}=1/2∫e^(-x)dx 积分区间为0到1
(3)
F(x)=(1/2) (e^x),x≤0
F(x)=1-(1/2)e^(-x),x>0