计算下列极限
如图
(1)原式=lim(t->0) (3tx^2+3xt^2+t^3)/t =lim(t->0) (3x^2+3xt+t^2) =3x^2 (2)原式=lim(x->∞) [1+e^(-2x)]/[1-e^(-2x)] =(1+0)/(1-0) =1 (3)原式=lim(x->0) (2x)^2/x^2 =4 (4)原式=lim(x->∞) {[1-2/(3x+1)]^[-(3x+1)/2]}^[-2x/(3x+1)] =lim(x->∞) e^[-2/(3+1/x)] =e^(-2/3) (5)原式=lim(x->∞) (1+sinx/x)/(1-sinx/x) =(1+0)/(1-0) =1 (6)好晌原式友空锋=lim(x->0) (x^2/2)*(2x)/x^3 =1 (7)原式=lim(x->∞) x*(1/x) =1 (8)极限不存在(9)原式=lim(x->∞) (x^2+1-x^2+1)/[√(x^2+1)+√(x^2-1)] =lim(x->∞亏虚) 2/[√(x^2+1)+√(x^2-1)] =0