点击[http://pinyin.cn/1GS0azNUGRv] 查看这张图片
简单计算一下即可,答首肢芹历案如者首世图所示
哪森1、lim(x→0)[(e^tanx)-(e^x)]/(sinx-xcosx)
= lim(x→0)(e^x)*lim(x→0)[e^(tanx-x)-1]/(sinx-xcosx)
= 1*lim(x→0)(tanx-x)/(sinx-xcosx) (0/0)
= lim(x→0)[(secx)^2 - 1]/(xsinx)
= lim(x→0)[(1+cosx)/(cosx)^2]*lim(x→0)(1-cosx)/(x^2)
= ……
2、lim(x→inf.)(1 - 2/x + 1/x^2)^x
= lim(t→0)(1 - 2t + t^2)^(1/t)
= e^lim(t→0)ln(1 - 2t + t^2)/t,
而
lim(t→0)ln(1 - 2t + t^2)/t (0/0)
= lim(t→0)(-2 +2t)/(1 - 2t + t^2)
= -2,
故
lim(x→inf.)(1 - 2/卖李x + 1/中缓迟x^2)^x
= e^(-2)。