如图,∠MON=90°,点A,B分别在射线OM、ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C。
(1)当A,B移动后,∠BAO=45°时,则∠C=_______;
(2)当A,B移动后,∠BAO=60°时,则∠C=_______;
(3)由(1)、(2)猜想∠C是否随A,B的移动而发生变化?并说明理由。
如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.
(1)当A,B移动后,∠BAO=45°时,则∠C=
45°
;
(2)当A,B移动后,∠BAO=60°时,则∠C=
45°
;
(3)由(1)、(2)猜想∠C是否随A,B的移动而发生变化?并说明理由.
考点:三角形的外角性质;三角形内角和定理.
分析:(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ABN,再根据角平分线的定义求出∠ABE和∠BAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;
(2)与(1)方法相同求解;
(2)与(1)的思路相同解答.搭明
解答:解:(1)根据三角形的外角性质,∠ABN=∠AOB+∠BAO=90°+45°=135°,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=
1
2
∠ABN=67.5°,∠BAC=
1
2
∠BAO=22.5°,
∴∠C=∠ABE-∠BAC=67.5°-22.5°=45°;
(2)根据三角形的外角性质,∠ABN=∠AOB+∠BAO=90°+60°=150°,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=
1
2
∠ABN=75°,∠BAC=
1
2
∠BAO=30°,
∴∠C=∠ABE-∠BAC=75°-30°=45°;
(3)∠C不会随A、B的移动而发生变化.
理晌雹由如下:根据三角形的外角性质,∠ABN=∠AOB+∠BAO,
∵BE平分∠NBA,AC平分∠BAO,
∴∠ABE=
1
2
∠ABN,∠BAC=
1
2
∠BAO,
∴∠C=∠ABE-∠BAC=
1
2
(∠AOB+∠BAO)-
1
2
∠BAO=
1
2
∠AOB,
∵∠MON=90°,
∴∠AOB=∠MON=90°,
∴∠C=45°.
点评:本题考查了三角形的一个外角等于与它不知谨告相邻的两个内角的和的性质,角平分线的定义,此类题目各小题的求解思路都相同.
相关内容
- 如图 ,在RT三角形中,角ABC=90度,D E F分别是AB BC CA的中点,若CD=5CM,则EF=
- 如图 ,在三角形ABC中AC等于AB,点O是BC的中点,AC切圆O于D,求证:AB是圆O的切线
- 如图 abcd为正方形 e为bc上一点 将正方形折叠 使a点与e点重合,折痕为mn,若tan角ae
- 如图 AB是⊙0的直径 OC⊥AB D是弧AB上任一点 e是弦BD上一点 且BE=AD 试判断△CDE的形状 并加以证明
- 如图 AB是圆O的直径 BC⊥AB于点B,连接OC交圆O于点E,弦AD平行于OC,弦DF⊥AB于点c
- 如图 ab是圆o的直径,P为AB延长线上的任意一点,C为半圆ABC的中点,PD切园O於D,连接CD交AB於点E
- 如图 ab是圆o的直径,点C在园O上运动与AB两点不重合,弦CD垂直AB,CP平分∠OCD交点P
- 如图 AD是三角形ABC的角平分线,DE平行AC交点AB于E,DF平行AB交AC于F,它是菱形吗?