如图 ab是圆o的直径,P为AB延长线上的任意一点,C为半圆ABC的中点,PD切园O於D,连接CD交AB於点E




求证PE²=PA*PB
TU

如图:对于三角形BDP和三角形DAP:

角P=角镇轿P,由蠢樱于角BDP+角ODB=90°,角ODB+角ADO=90°  所以角BDP=角ODA=角OAD 所以

三角形BDP和三角形DAP相似。

所以 PA/PD=PD/PB

故PA*PB=PD^2 下只要证明PD=PE即可。

因为C 是半圆的重点,有CA=CB,故角COE=90°,则角OCE+角御档肆CEO=90°,即角PED+角ED0=90°,而角PDE++角ED0=90°所以角PDE=角PED  所以三角形PDE是等腰三角形,PE=PD。

所以证得。。。。