求下列函数的定义域:y=根号(2sinx^2+cosx-1)
(1)y=根号(2sinx^2+cosx-1)
(2)y=根号[log2(1/sinx)-1]
(3)y=根号(sinx)+1/根号(16-x^2)
(1)2sinx^2+cosx-1>=0 2-2cosx^2+cosx-1>=0 解得 -1/2<=cosx<饥拍=1
画出cosx在-TT到TT内的图宏肢缓形可看出 -2TT/3<=X<=2TT/3
则定义域为 2kTT--2TT/3<=X<=2kTT+2TT/3 k为整数 TT是派
(2)首先由log2(1/sinx)知sinx>0
log2(1/sinx)-1>=0 log2(1/sinx)>=log2(2) 1/sinx>=2
0<sinx<=1/蔽模2
画出sinx在0到2TT内和图形看出 0<X<=TT/6或 5TT/6<=X<2TT
定义域就是上面的再加2kTT
(3)sinx>=0 16-x^2>0 -4<X<4 定义域为 (-4,-TT)V[0,TT]
(1)y=√(2sin^2x+cosx-1)
=√做粗前(2-2cos^2x+cosx-1)
-2cos^2x+cosx+1≥0
2cos^2x-cosx-1≤0
(2cosx+1)(cosx-1)≤0
-1/2≤cosx≤1
x∈[2kπ-2/凳渣3π,2kπ+2/3π]
(2)y=√纯清[log2(1/sinx)-1]
log2(1/sinx)-1≥0
log2(1/sinx)≥1
0<sinx≤1/2
x∈(2kπ,2kπ+π/6]∪[2kπ+5π/3,2kπ+π)
(3)y=√(sinx)+1/√(16-x^2)
sinx≥0=>x∈[2kπ,2kπ+π]
16-x^2>0=>-4<x<4
x∈(-4,-π]∪[0,π]
1) y=根裂链号(2sinx^2+cosx-1)
=根号(2-2cosx^2+cosx-1)
=根号(-2cosx^2+cosx+1)
-2cosx^2+cosx+1>=0 设:cosx=t
-2t^2+t+1>=0
2t^2-t-1<=0
(2t+1)(t-1)<=0
-0.5<=t<=1 -0.5<=cosx<=1
2派胡唯/3+2k派>=x>=2k派
2)y=根号裤源培[log2(1/sinx)-1]
1/sinx>0 sinx>0
log2(1/sinx)>=1 sinx<=0.5
2k派<x<=2k派+派/2
3)y=根号(sinx)+1/根号(16-x^2)
sinx>=0 2k派=<x=<2k派+派
x^2<16 -4<x<4
-4<x<=-派 0<=x<=派