设函数f(x)=(ax+b)/(x^2+1)的值域为【-1,4】,求a,b的值。




y=(ax+b)/(x^2+1)
x^2y-ax+(y-b)=0
这个关于x的方程有实数解则判别式大于等于0
所以a^2-4y(y-b)>槐陵=0
4y^2-4by-a^2<=0
值域[-1,4]
即不等式的解集是-1<=y<=4
则-1和4 是对应的方敬碰程4y^2-4by-a^2=0的根
所以-1+4=4b/4,-1*4=-a^2/4
b=3,a^2=16

所亮明谈以a=4,b=3或a=-4,b=3
把y=(ax+b)/(x^2+1)去分迟掘母整理码誉核得
yx²-ax+y-b=0
判别式=a²-4y(y-b)≥0,解得
4y²-4by-a²≤0
∵值域[-1,4],
∴-1,4是方程4y²-4by-a²=0的两根,
由韦达定理,-1+4=b,虚备-1×4=-a²/4,
∴a=±4,b=3.
a=正负4,b=3